首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   58篇
  2020年   8篇
  2018年   6篇
  2017年   11篇
  2016年   9篇
  2015年   30篇
  2014年   15篇
  2013年   28篇
  2012年   31篇
  2011年   42篇
  2010年   29篇
  2009年   26篇
  2008年   33篇
  2007年   34篇
  2006年   33篇
  2005年   30篇
  2004年   27篇
  2003年   31篇
  2002年   42篇
  2001年   19篇
  2000年   16篇
  1999年   15篇
  1998年   10篇
  1996年   7篇
  1994年   6篇
  1993年   6篇
  1992年   16篇
  1991年   7篇
  1990年   18篇
  1989年   14篇
  1988年   7篇
  1987年   14篇
  1986年   15篇
  1985年   21篇
  1984年   10篇
  1983年   10篇
  1982年   15篇
  1981年   7篇
  1980年   9篇
  1979年   8篇
  1978年   15篇
  1977年   12篇
  1976年   12篇
  1975年   7篇
  1974年   7篇
  1973年   15篇
  1972年   11篇
  1971年   10篇
  1970年   8篇
  1969年   6篇
  1968年   5篇
排序方式: 共有856条查询结果,搜索用时 31 毫秒
61.
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.  相似文献   
62.

Background

Aortic valve calcification (AVC) secondary to renal failure (RF) is an inflammation-regulated process, but its pathogenesis remains unknown. We sought to assess the cellular processes that are involved in the early phases of aortic valve disease using a unique animal model of RF-associated AVC.

Methods

Aortic valves were obtained from rats that were fed a uremia-inducing diet exclusively for 2, 3, 4, 5, and 6 weeks as well as from controls. Pathological examination of the valves included histological characterization, von Kossa staining, and antigen expression analyses.

Results

After 2 weeks, we noted a significant increase in urea and creatinine levels, reflecting RF. RF parameters exacerbated until the Week 5 and plateaued. Whereas no histological changes or calcification was observed in the valves of any study group, macrophage accumulation became apparent as early as 2 weeks after the diet was started and rose after 3 weeks. By western blot, osteoblast markers were expressed after 2 weeks on the diet and decreased after 6 weeks. Collagen 3 was up-regulated after 3 weeks, plateauing at 4 weeks, whereas collagen 1 levels peaked at 2 and 4 weeks. Fibronectin levels increased gradually until Week 5 and decreased at 6 weeks. We observed early activation of the ERK pathway, whereas other pathways remained unchanged.

Conclusions

We concluded that RF induces dramatic changes at the cellular level, including macrophage accumulation, activation of cell signaling pathway and extracellular matrix modification. These changes precede valve calcification and may increase propensity for calcification, and have to be investigated further.  相似文献   
63.
Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells.  相似文献   
64.
Several benzofuran derivatives linked to a 3-indoletetrahydropyridine through an alkyl chain were prepared and evaluated for serotonin transporter and 5-HT1A receptor affinities. Their design, synthesis and structure–activity relationships are described.  相似文献   
65.
A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and ‘Dulce’ (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.  相似文献   
66.
Neurons are polarized cells that contain distinct sets of proteins in their axons and dendrites. Synaptic vesicles (SV) and many SV proteins are exclusively localized in the presynaptic regions but not in dendrites. Despite their fundamental importance, the mechanisms underlying the polarized localization of SV proteins remain unclear. The transparent nematode Caenorhabditis elegans can be used to examine sorting and transport of SV proteins in vivo. Here, we identify a novel protein kinase LRK-1, a C. elegans homolog of the familial Parkinsonism gene PARK8/LRRK2 that is required for polarized localization of SV proteins. In lrk-1 deletion mutants, SV proteins are localized to both presynaptic and dendritic endings in neurons. This aberrant localization of SV proteins in the dendrites is dependent on the AP-1 mu1 clathrin adaptor UNC-101, which is involved in polarized dendritic transport, but not on UNC-104 kinesin, which is required for the transport of SV to presynaptic regions. The LRK-1 proteins are localized in the Golgi apparatus. These results suggest that the LRK-1 protein kinase determines polarized sorting of SV proteins to the axons by excluding SV proteins from the dendrite-specific transport machinery in the Golgi.  相似文献   
67.
Tribulus terrestris is an herbal nutritional supplement that is promoted to produce large gains in strength and lean muscle mass in 5-28 days (15, 18). Although some manufacturers claim T. terrestris will not lead to a positive drug test, others have suggested that T. terrestris may increase the urinary testosterone/epitestosterone (T/E) ratio, which may place athletes at risk of a positive drug test. The purpose of the study was to determine the effect of T. terrestris on strength, fat free mass, and the urinary T/E ratio during 5 weeks of preseason training in elite rugby league players. Twenty-two Australian elite male rugby league players (mean +/- SD; age = 19.8 +/- 2.9 years; weight = 88.0 +/- 9.5 kg) were match-paired and randomly assigned in a double-blind manner to either a T. terrestris (n = 11) or placebo (n = 11) group. All subjects performed structured heavy resistance training as part of the club's preseason preparations. A T. terrestris extract (450 mg.d(-1)) or placebo capsules were consumed once daily for 5 weeks. Muscular strength, body composition, and the urinary T/E ratio were monitored prior to and after supplementation. After 5 weeks of training, strength and fat free mass increased significantly without any between-group differences. No between-group differences were noted in the urinary T/E ratio. It was concluded that T. terrestris did not produce the large gains in strength or lean muscle mass that many manufacturers claim can be experienced within 5-28 days. Furthermore, T. terrestris did not alter the urinary T/E ratio and would not place an athlete at risk of testing positive based on the World Anti-Doping Agency's urinary T/E ratio limit of 4:1.  相似文献   
68.
69.
The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.  相似文献   
70.
The drought‐sensitivity of oilseed rape (OSR, Brassica napus cv. SW Landmark) was investigated, using the more widely studied crop species wheat (Triticum aestivum cv. Tybalt) as a benchmark. The water relations of OSR and wheat were compared in lysimeter and controlled environment experiments to test the hypothesis that the growth of OSR is restricted to a greater extent by soil drying than wheat and to determine whether the greater sensitivity results from differences in root or shoot traits. Plants were grown, with or without irrigation, in 1.2 m tall lysimeters packed with a sandy clay loam soil. The experiment was conducted in an open‐sided glasshouse to encourage air flow and to resemble a field environment as far as possible; plant population densities were equivalent to commercial crops. Irrigated OSR (evapo)transpired more water than wheat (498 vs. 355 mm), but had a comparable water use efficiency (WUE; 4.1 vs. 4.4 g DW mm?1 H2O). Oilseed rape showed a greater reduction in above‐ground growth (52% vs. 21%) and a smaller increase in WUE (27% vs. 45%) when water was withheld. Oilseed rape also responded to soil drying at a lower soil moisture deficit than wheat; transpiration rates fell below the potential of irrigated plants when plant available water remaining in the soil profile declined from 54 to 23% compared to 38 to 9% for wheat. The root hydraulic conductivity of young OSR plants, measured on root surface area basis, was about twice that of wheat, and was comparable on a root length basis. The results show that OSR was more sensitive to a restricted water supply than the benchmark species wheat and that the greater sensitivity resulted from differences in shoot, rather than root, characteristics. The root system of OSR was at least as efficient as wheat at extracting water from soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号